Nequix MP
Predictions
Convex hull distance prediction errors projected onto elements
2 He 0
10 Ne 0
18 Ar 0
36 Kr 0
54 Xe 0.128
57 La 0.0685
58 Ce 0.0727
59 Pr 0.0674
60 Nd 0.0669
61 Pm 0.0633
62 Sm 0.0681
63 Eu 0.0848
64 Gd 0.0715
65 Tb 0.0693
66 Dy 0.0734
67 Ho 0.0709
68 Er 0.0735
69 Tm 0.075
70 Yb 0.0709
71 Lu 0.0741
86 Rn 0
89 Ac 0.0681
90 Th 0.0971
91 Pa 0.123
92 U 0.103
93 Np 0.152
94 Pu 0.361
95 Am 0
96 Cm 0
97 Bk 0
98 Cf 0
99 Es 0
100 Fm 0
101 Md 0
102 No 0
103 Lr 0
118 Og 0
57-71 La-Lu Lanthanides
89-103 Ac-Lr Actinides
Trained By
Model Info
- Model Version 0.1.0
- Model Type UIP
- Targets EFSG
- Openness OSOD
- Train Task S2EFS
- Test Task IS2RE-SR
- Trained for Benchmark Yes
Training Set
MPtrj: 1.58M structures from 146k materials
Description
Nequix is a simplified version of NequIP with added RMSnorm, implemented in JAX, and trained with Muon optimizer.
Hyperparameters
- max_force:
0.02 - max_steps:
500 - ase_optimizer:
"FIRE" - cell_filter:
"FrechetCellFilter" - hidden_irreps:
"128x0e+64x1o+32x2e+32x3o" - graph_construction_radius:
6 - max_neighbors:
null - lmax:
3 - radial_basis_size:
8 - radial_mlp_size:
64 - radial_mlp_layers:
2 - radial_polynomial_p:
6 - layer_norm:
true - optimizer:
"muon" - weight_decay:
0.001 - warmup_epochs:
0.1 - warmup_factor:
0.2 - grad_clip_norm:
100 - batch_size:
256 - n_epochs:
100 - loss:
{"energy":"mae","force":"l2","stress":"mae"} - loss_weights:
{"energy":20,"force":20,"stress":5} - ema_decay:
0.999