Nequip-OAM-L
Predictions
Convex hull distance prediction errors projected onto elements
2 He 0
10 Ne 0
18 Ar 0
36 Kr 0
54 Xe 0.074
57 La 0.0321
58 Ce 0.0324
59 Pr 0.0329
60 Nd 0.0301
61 Pm 0.0321
62 Sm 0.0313
63 Eu 0.0597
64 Gd 0.0418
65 Tb 0.0306
66 Dy 0.0332
67 Ho 0.0299
68 Er 0.0302
69 Tm 0.0304
70 Yb 0.0543
71 Lu 0.0313
86 Rn 0
89 Ac 0.0288
90 Th 0.0417
91 Pa 0.0466
92 U 0.0551
93 Np 0.0918
94 Pu 0.198
95 Am 0
96 Cm 0
97 Bk 0
98 Cf 0
99 Es 0
100 Fm 0
101 Md 0
102 No 0
103 Lr 0
118 Og 0
57-71 La-Lu Lanthanides
89-103 Ac-Lr Actinides
Trained By
Model Info
- Model Version 0.1
- Model Type UIP
- Targets EFSG
- Openness OSOD
- Train Task S2EFS
- Test Task IS2RE-SR
- Trained for Benchmark Yes
Training Set
OMat24: 101M structures from 3.23M materials
Subsampled Alexandria: 10.4M structures from 3.23M materials
MPtrj: 1.58M structures from 146k materials
Description
Large NequIP foundation potential; see https://www.nequip.net/models/mir-group/NequIP-OAM-L:0.1 for details and https://arxiv.org/abs/2504.16068 for model/training infrastructure.
Steps
Training performed by: (1) pre-training on OMat24; (2) fine-tuning on MPtrj+sAlex, with a reduced learning rate (1e-4), energy-loss-upweighting (1:1:0.01 instead of 1:5:0.01) and StochasticWeightAveraging (SWA).
Hyperparameters
- max_force:
0.05 - max_steps:
500 - ase_optimizer:
"GOQN" - cell_filter:
"FrechetCellFilter" - optimizer:
"AdamW" - weight_decay:
1e-8 - graph_construction_radius:
6 - sph_harmonics_l_max:
3 - n_layers:
6 - n_features:
"128 (l=0 scalars), 64 (l=1 vectors), 32 (l=2,3 tensors)" - parity:
false - zbl_potential:
true - type_embed_num_features:
48 - polynomial_cutoff:
5 - n_radial_bessel_basis:
8 - loss:
"Huber - delta=0.01 for energy, delta=0.1 for stress, stratified delta (0.01, 0.007, 0.004, 0.001) for force" - loss_weights:
{"energy":1,"force":5,"stress":0.01} - batch_size:
640 - initial_learning_rate:
0.005 - gradient_clip_val:
1 - learning_rate_schedule:
"ReduceLROnPlateau - factor=0.1, patience=10, min_lr=1e-6" - epochs:
30 - max_neighbors:
null