HIENet
Predictions
Convex hull distance prediction errors projected onto elements
2 He 0
10 Ne 0
18 Ar 0
36 Kr 0
54 Xe 0.064
57 La 0.0632
58 Ce 0.0661
59 Pr 0.0636
60 Nd 0.0628
61 Pm 0.0555
62 Sm 0.0641
63 Eu 0.0825
64 Gd 0.0693
65 Tb 0.0641
66 Dy 0.0685
67 Ho 0.0648
68 Er 0.0658
69 Tm 0.0687
70 Yb 0.0665
71 Lu 0.0682
86 Rn 0
89 Ac 0.0573
90 Th 0.0938
91 Pa 0.102
92 U 0.101
93 Np 0.172
94 Pu 0.411
95 Am 0
96 Cm 0
97 Bk 0
98 Cf 0
99 Es 0
100 Fm 0
101 Md 0
102 No 0
103 Lr 0
118 Og 0
57-71 La-Lu Lanthanides
89-103 Ac-Lr Actinides
Model Info
- Model Version v1.0.1
- Model Type UIP
- Targets EFSG
- Openness OSOD
- Train Task S2EFS
- Test Task IS2RE-SR
- Trained for Benchmark No
Training Set
MPtrj: 1.58M structures from 146k materials
Description
HIENet is a hybrid invariant-equivariant graph neural network interatomic potential that combines E(3) invariant and O(3) equivariant message passing layers for materials discovery. The model uses physics-informed gradient-based predictions to ensure all outputs satisfy key physical constraints including force conservation and rotational symmetries, enabling accurate prediction of energy, forces, and stress for crystalline materials.
Hyperparameters
- max_force:
0.05 - max_steps:
500 - ase_optimizer:
"FIRE" - cell_filter:
"FrechetCellFilter" - epochs:
200 - optimizer:
"AdamW" - loss:
"Huber - delta=0.01" - loss_weights:
{"energy":1,"force":1,"stress":0.01} - batch_size:
48 - initial_learning_rate:
0.01 - learning_rate_schedule:
"CosineWarmupLR - warmup_factor=0.2, warmup_epochs=0.1, lr_min_factor=0.0005" - weight_decay:
0.001 - lmax:
3 - num_invariant_conv:
1 - inv_features:
[384,384] - irreps:
"384x0e -> 512x0e+128x1e+64x2e -> 512x0e+128x1e+64x2e+32x3e -> 512x0e" - radial_basis:
"bessel" - n_radial_bessel_basis:
8 - cutoff_function:
"poly_cut - p_value=6" - activation_gate:
"silu/tanh" - activation_scalar:
"silu/tanh" - dropout:
0.04 - dropout_attention:
0.08 - conv_denominator:
35.989574 - ema_decay:
0.999 - forces_rms_scale:
0.799 - max_neighbors:
null - graph_construction_radius:
5