EquFlash
Predictions
Convex hull distance prediction errors projected onto elements
2 He 0
10 Ne 0
18 Ar 0
36 Kr 0
54 Xe 0.022
57 La 0.0271
58 Ce 0.027
59 Pr 0.0279
60 Nd 0.0249
61 Pm 0.0287
62 Sm 0.0264
63 Eu 0.0566
64 Gd 0.0378
65 Tb 0.0264
66 Dy 0.0284
67 Ho 0.025
68 Er 0.0252
69 Tm 0.0251
70 Yb 0.043
71 Lu 0.0264
86 Rn 0
89 Ac 0.0279
90 Th 0.0338
91 Pa 0.0392
92 U 0.0464
93 Np 0.0863
94 Pu 0.192
95 Am 0
96 Cm 0
97 Bk 0
98 Cf 0
99 Es 0
100 Fm 0
101 Md 0
102 No 0
103 Lr 0
118 Og 0
57-71 La-Lu Lanthanides
89-103 Ac-Lr Actinides
Model Info
- Model Version v2025.06.23
- Model Type UIP
- Targets EFSG
- Openness CSOD
- Train Task S2EFS
- Test Task IS2RE-SR
- Trained for Benchmark No
Training Set
OMat24: 101M structures from 3.23M materials
MPtrj: 1.58M structures from 146k materials
Subsampled Alexandria: 10.4M structures from 3.23M materials
Description
EquFlash is an E(3)-equivariant model based on the SevenNet-0 architecture, with tensor products accelerated by FlashTP. FlashTP achieves up to 41.6× and 60.8× kernel speedups over e3nn and NVIDIA cuEquivariance, respectively, while reducing memory usage by 6×. Leveraging these gains, we scaled EquFlash to a larger capacity than the original SevenNet-0.
Training
EquFlash, a scaled-up model derived from SevenNet-0 and accelerated with FlashTP, was pretrained on OMat24 and finetuned on MPtrj and sAlex.
Hyperparameters
- max_force:
0.02 - max_steps:
500 - ase_optimizer:
"FIRE" - cell_filter:
"FrechetCellFilter" - graph_construction_radius:
6 - max_neighbors:
null
Dependencies
- flashTP_e3nn 0.1.0
- torch 2.8.0+cu126
- fairchem-core 1.10.0