Eqnorm MPtrj
Predictions
Convex hull distance prediction errors projected onto elements
2 He 0
10 Ne 0
18 Ar 0
36 Kr 0
54 Xe 0
57 La 0.06
58 Ce 0.0655
59 Pr 0.0603
60 Nd 0.0584
61 Pm 0.0519
62 Sm 0.0599
63 Eu 0.0786
64 Gd 0.064
65 Tb 0.0602
66 Dy 0.0638
67 Ho 0.0616
68 Er 0.0629
69 Tm 0.065
70 Yb 0.0667
71 Lu 0.0643
86 Rn 0
89 Ac 0.057
90 Th 0.0917
91 Pa 0.0939
92 U 0.105
93 Np 0.157
94 Pu 0.363
95 Am 0
96 Cm 0
97 Bk 0
98 Cf 0
99 Es 0
100 Fm 0
101 Md 0
102 No 0
103 Lr 0
118 Og 0
57-71 La-Lu Lanthanides
89-103 Ac-Lr Actinides
Trained By
Model Info
- Model Version 0.1.0
- Model Type UIP
- Targets EFSG
- Openness OSOD
- Train Task S2EFS
- Test Task IS2RE-SR
- Trained for Benchmark Yes
Training Set
MPtrj: 1.58M structures from 146k materials
Description
eqnorm is a graph neural network model designed for predicting the energy, forces, and stresses of materials. The model utilizes a combination of invariant and equivariant layers to effectively capture the symmetries present in material structures.
Hyperparameters
- max_force:
0.02 - max_steps:
500 - ase_optimizer:
"FIRE" - cell_filter:
"FrechetCellFilter" - loss:
"Huber" - loss_weights:
{"energy":20,"force":20,"stress":320} - optimizer:
"AdamW" - weight_decay:
0.001 - clip_grad_norm:
100 - ema_decay:
0.999 - max_learning_rate:
0.01 - min_learning_rate:
0.000001 - learning_rate_schedule:
"warmcosine" - warmup_factor:
0.2 - epochs:
100 - batch_train:
128 - n_layers:
4 - num_embedding_features:
128 - num_bessel_basis:
8 - invariant_layers:
2 - invariant_neurons:
64 - poly_p:
6 - graph_construction_radius:
6 - max_neighbors:
null - irreps_hidden:
"128x0e+64x1o+32x2e+32x3o" - irreps_sh:
"1x0e+1x1o+1x2e+1x3o" - energy_shift:
"per_species" - energy_scale:
"force_rms" - shift_trainable:
false - scale_trainable:
false