DPA-3.1-MPtrj
Predictions
Convex hull distance prediction errors projected onto elements
2 He 0
10 Ne 0
18 Ar 0
36 Kr 0
54 Xe 0.02
57 La 0.0583
58 Ce 0.0579
59 Pr 0.0557
60 Nd 0.0542
61 Pm 0.0469
62 Sm 0.0563
63 Eu 0.0774
64 Gd 0.063
65 Tb 0.0588
66 Dy 0.0585
67 Ho 0.0568
68 Er 0.0647
69 Tm 0.0596
70 Yb 0.056
71 Lu 0.0572
86 Rn 0
89 Ac 0.0504
90 Th 0.0864
91 Pa 0.112
92 U 0.0927
93 Np 0.157
94 Pu 0.401
95 Am 0
96 Cm 0
97 Bk 0
98 Cf 0
99 Es 0
100 Fm 0
101 Md 0
102 No 0
103 Lr 0
118 Og 0
57-71 La-Lu Lanthanides
89-103 Ac-Lr Actinides
Trained By
Model Info
- Model Version v0.3
- Model Type UIP
- Targets EFSG
- Openness OSOD
- Train Task S2EFS
- Test Task IS2RE-SR
- Trained for Benchmark Yes
Training Set
MPtrj: 1.58M structures from 146k materials
Description
DPA3 is an advanced interatomic potential leveraging the message passing architecture, implemented within the DeePMD-kit framework, available on GitHub. Designed as a large atomic model (LAM), DPA3 is tailored to integrate and simultaneously train on datasets from various disciplines, encompassing diverse chemical and materials systems across different research domains. Its model design ensures exceptional fitting accuracy and robust generalization both within and beyond the training domain. Furthermore, DPA3 maintains energy conservation and respects the physical symmetries of the potential energy surface, making it a dependable tool for a wide range of scientific applications.
Hyperparameters
- max_force:
0.05 - max_steps:
500 - ase_optimizer:
"FIRE" - cell_filter:
"ExpCellFilter" - n_layers:
24 - e_rcut:
6 - a_rcut:
4.5 - n_dim:
128 - e_dim:
64 - a_dim:
32 - optimizer:
"AdamW" - round1:
{"loss":"MSE","loss_weights":{"energy":"0.2 -> 20","force":"100 -> 20","virial":"0.02 -> 1"},"initial_learning_rate":0.001,"learning_rate_schedule":"ExpLR - start_lr=0.001, decay_steps=5000, stop_lr=0.00001","training_steps":2000000} - round2:
{"loss":"Huber","loss_weights":{"energy":15,"force":1,"virial":2.5},"initial_learning_rate":0.0002,"learning_rate_schedule":"ExpLR - start_lr=0.0002, decay_steps=5000, stop_lr=0.00001","training_steps":1000000} - batch_size:
64 - epochs:
120 - graph_construction_radius:
6 - max_neighbors:
null