AlphaNet-v1-OMA
Predictions
Convex hull distance prediction errors projected onto elements
2 He 0
10 Ne 0
18 Ar 0
36 Kr 0
54 Xe 0.048
57 La 0.035
58 Ce 0.035
59 Pr 0.0329
60 Nd 0.0303
61 Pm 0.0312
62 Sm 0.0324
63 Eu 0.0584
64 Gd 0.0419
65 Tb 0.0349
66 Dy 0.0351
67 Ho 0.0316
68 Er 0.0326
69 Tm 0.0334
70 Yb 0.0401
71 Lu 0.0337
86 Rn 0
89 Ac 0.0308
90 Th 0.0457
91 Pa 0.0457
92 U 0.0572
93 Np 0.0873
94 Pu 0.198
95 Am 0
96 Cm 0
97 Bk 0
98 Cf 0
99 Es 0
100 Fm 0
101 Md 0
102 No 0
103 Lr 0
118 Og 0
57-71 La-Lu Lanthanides
89-103 Ac-Lr Actinides
Trained By
- Bangchen Yin (Tsinghua University)
Model Info
- Model Version v1
- Model Type UIP
- Targets EFSG
- Openness OSOD
- Train Task S2EFS
- Test Task IS2RE-SR
- Trained for Benchmark No
Training Set
OMat24: 101M structures from 3.23M materials
Subsampled Alexandria: 10.4M structures from 3.23M materials
MPtrj: 1.58M structures from 146k materials
Description
AlphaNet is a local frame-based equivariant model designed to tackle the challenges of achieving both accurate and efficient simulations for atomistic systems. AlphaNet enhances computational efficiency and accuracy by leveraging the local geometric structures of atomic environments through the construction of equivariant local frames and learnable frame transitions.
We changed the RBF function and used a small size model in this version.
Hyperparameters
- max_force:
0.03 - max_steps:
500 - ase_optimizer:
"FIRE" - cell_filter:
"FrechetCellFilter" - optimizer:
"Adam" - loss:
"MAE" - loss_weights:
{"energy":4,"force":100,"stress":10} - batch_size:
256 - initial_learning_rate:
0.0002 - learning_rate_schedule:
"StepLR(decay_steps=10000, decay_ratio = 0.93)" - epochs:
4 - n_layers:
4 - n_hidden_channels:
176 - n_bessel_basis:
8 - n_heads:
24 - graph_construction_radius:
5 - max_neighbors:
50